

The Wearable Clinic

Niels Peek

Health e-Research Centre The University of Manchester

The Wearable Clinic Launch Event, 5th July 2017

Niels Peek

Health e-Research Centre The University of Manchester

The Wearable Clinic Launch Event, 5th July 2017

The Wearable Clinic: Overview

Consortium

- University of Manchester
 - Health eResearch Centre (Health Sciences)
 - Sensing, Imaging and Signal Processing (EEE)
 - Information Management (Computer Science)
 - Psychology & Mental Health (Health Sciences)
- University of York
 - Centre for Health Economics
 - Department of Computer Science
- **Partners** Health Innovation Manchester, NHS Digital, Cerner, Withings, PatientView, NICE, Greater Manchester Connected Health Ecosystem, SmartLife

Engineering and Physical Sciences Research Council

Today's programme (1)

12.00 - 13.00	Arrival, registration and buffet lunch	
13.00 - 13.20	Introduction to the Wearable Clinic	Niels Peek
13.20 - 13.40	WS1: Adaptive sensing and behavioural phenotyping	Alex Casson
13.40 - 14.00	WS2: Dynamic, multi-dimensional risk prediction	Matthew Sperrin
14.00 - 14.15	Patient involvement and engagement	Lamiece Hassan
14.15 - 14.30	Risk analysis and assurance case	lbrahim Habli
14.30 - 15.00	Coffee	

Today's programme (2)

15.00 - 15.15	Health economics of the Wearable Clinic	Cynthia Iglesias
15.15 - 15.30	Geolocation data in serious mental illness phenotyping	Paolo Fraccaro & Stuart Lavery-Blackie
15.30 - 15.50	WS3: Data-responsive care planning	Bijan Parsia
15.50 - 16.30	Breakout session	All
16.30 - 16.45	Feedback on breakout session	
16.45 - 17.00	Closing remarks	
17.00 onwards	Drinks and networking	

Menu

Background

Vision

Research programme

Clinical exemplars

Preliminary work

NHS Digital - Quality and Outcomes Framework Report: England, 2015-16

WARNING DO NOT TAKE INTERNALLY!

PATENTED NO MIN FORM

RGVIVM

PERIODIC MAINTENANCE INSPECTION RECORD

INSPECTION DATE MONTH YEAR

INSPECTION DATE MONTH YEAR

Clinical workload in UK primary care: a retrospective analysis (1) (1) of 100 million consultations in England, 2007-14

F D Richard Hobbs, Clare Bankhead, Togir Mukhtar, Sarah Stevens, Rafael Perera-Salazar, Tim Holt, Chris Salisbury, on behalf of the National Institute for Health Research School for Primary Care Research

Summary

Background Primary care is the main source of health care in many health systems, including the UK National Health Loncet 2016; 387: 2323-30 Service (NHS), but few objective data exist for the volume and nature of primary care activity. With rising concerns Published Online that NHS primary care workload has increased substantially, we aimed to assess the direct clinical workload of general Aprils. 2016 practitioners (GPs) and practice nurses in primary care in the UK. http://dx.doi.org/10.1016 50140-6736(16)00620-6

Methods We did a retrospective analysis of GP and nurse consultations of non-temporary patients registered at 398 English general practices between April, 2007, and March, 2014. We used data from electronic health records routinely entered in the Clinical Practice Research Datalink, and linked CPRD data to national datasets. Transitional approach in the one-net data in the second seco routinely entered in the Clinical Practice Research Datalink, and linked CPRD data to national datasets. Trends in age-standardised and sex-standardised consultation rates were modelled with joinpoint regression analysis.

Findings The dataset comprised 101818352 consultations and 20626297 person-years of observation. The crude annual consultation rate per person increased by 10-51%, from 4-67 in 2007-08, to 5-16 in 2013-14. Consultation rates were highest in infants (age 0-4 years) and elderly people (\pm 55 years), and were higher for formale patients than for male patients of all ages. The generates increases in age-standardised and sevestundardised rates were in GPs, with

Interpretation Our findings show a substantial increase in practice consultation rates, average consultation duration, and total patient-facing clinical workload in English general practice. These results suggest that English primary care as currently delivered could be reaching saturation point. Notably, our data only explore direct clinical workload and not indirect activities and professional duties, which have probably also increased. This and additional research questions, including the outcomes of workload changes on other sectors of health care, need urgent answers for primary care provision internationally.

Funding Department of Health Policy Research Programme.

Copyright @ Hobbs et al. Open Access article distributed under the terms of CC BY.

See Comment page 2270 Nuffield Department of Primary Care Health Sciences, Radcliffe Primary Care Building Radcliffe Ok Oxford, UK

> of Social and Community Medicine, Canynge Hall, Bristol, UK (Prof C Salisbury MD) F D Richard Hobbs. Nuffield Department of Primary Care Health Sciences, Radeliffe rimary Care Building, Raddiffe Observatory Quarter, Oxford OX2 6GG, UK richard.hobbs@phc.ox.ac.uk

Trends in computing

- Ubiquity: computers are everywhere
- Interconnection, e.g. internet
- Intelligence: the complexity of tasks that computers can do grows steadily
- Delegation: we are giving more control to computers
- Human orientation, e.g. smart watches

Vision for The Wearable Clinic

Challenges

limitations in battery life impede wearable sensors, narrowing the scope of applications

existing clinical risk prediction methods are inadequate for the dynamic complexity of long-term conditions

electronic guideline systems not suited for long-term care with complex interactions

a large number of new technologies do not translate to clinical practice

Research programme

- 1. Design adaptive sensing and signal compression algorithms for high-resolution sensing data
- 2. Dynamic multidimensional methods for predicting health risks
- 3. Create algorithms for adaptive, personalised care planning for patients with long-term conditions
- 4. Support future real-world deployment of The Wearable Clinic through early assessment of:
 - preferences of patients and their carers
 - potential health and economic benefits
 - patient safety and data security risks
 - regulatory challenges associated with clinical deployment

Closing the translational gap

Clinical examplars

- Schizophrenia
 - common, long-term mental health condition
 - sudden episodes of psychosis involving hallucinations, delusions, and changes in behaviour
 - psychosis often results in unscheduled hospital admission, with substantial suffering as well as high healthcare costs
- Chronic kidney disease
 - progressive decline in kidney function over time
 - patients often have one or more other long-term conditions (such as diabetes or heart disease)
 - high risk of developing acute kidney injury, an abrupt loss of kidney function that often requires hospital admission

Preliminary work

- Schizophrenia
 - ClinTouch
 - CareLoop
 - digital phenotyping
- Chronic kidney disease
 - onset prediction
 - PatientView

ClinTouch – Mobile monitoring for schizophrenia

- Experience sampling methodology
- User responds on a touch-screen
 mobile phone
- Validated against the Positive and Negative Syndrome Scale (PANSS) for measuring symptom severity in schizophrenia

CareLoop

CareLoop clinician interface

0 A https://dev.careloop.org.uk/clintouch/#/providers/1/myparticipants						A v C Sociel			₽ 🖬 🕈 🖗	
ClinTouch 🏾 🅱									Test Provid	ler Log out
PROVIDER MENU	Mr. Dontinii									
ly participants	My Particip	Jants								
All participants	Search	Order by Status								Add participant
	Username	Name	Mobile	NHS No	Ext Id	Date of Birth	Status	Provider		
	DawnNorris	Ms Dawn Q Norris	07891 864401	4852337554	GGI01033897	1983-11-07	INTERVENE	TestProvider	edit	summary
	DerekBenson	Ms Derek X Benson	07891 138548	4021083012	CIR69280419	1945-11-05	INTERVENE	TestProvider	edit	summary
	LaceyBeck	Mrs Lacey K Beck	07891 947774	5463864380	SYF12838032	1927-09-14	MONITOR	TestProvider	edit	summary
	CarolPhillips	Mrs Carol H Phillips	07891 081501	7516426149	XBR80958949	1928-06-03	MONITOR	TestProvider	edit	summary
	AmayaMendez	Mrs Amaya O Mendez	07891 858650	8009330236	WQW04623471	1933-11-10	MONITOR	TestProvider	edit	summary
	MargaretCarrillo	Mr Margaret G Carrillo	07891 515212	5380868330	MAF00635150	1931-06-05	MONITOR	TestProvider	edit	summary
	TestParticipant	Mrs Test H Participant	07891 666072	2736840145	LKA68256122	1997-11-30	ОК	TestProvider	edit	summary
	VictoriaKlein	Mr Victoria N Klein	07891 313494	8322800095	OQN65093317	1925-08-13	ок	TestProvider	edit	summary
	GarrisonScott	Ms Garrison J Scott	07891 128345	5824176919	ULV28783802	1940-08-29	ОК	TestProvider	edit	summary
	WyattHancock	Mr Wyatt I Hancock	07891 587901	0508568851	GBU16439917	1929-04-07	ОК	TestProvider	edit	summary
	RooneyHolder	Mrs Rooney H Holder	07891 208044	2729115697	BEF70504702	1932-06-14	ок	TestProvider	edit	summary
	LeslieMcdonald	Mrs Leslie L Mcdonald	07891 333913	3365097951	OUP71607941	1976-10-16	ОК	TestProvider	edit	summary
	BarclayBarr	Mr Barclay U Barr	07891 887299	5184689020	UIH93614802	1959-07-01	ок	TestProvider	edit	summary
	DoraRatliff	Ms Dora X Ratliff	07891 249445	1394813542	HNG71250509	1945-05-21	ок	TestProvider	edit	summary
	BryarMelton	Mr Bryar N Melton	07891 100027	0900393608	HOC37217428	1991-06-14	ОК	TestProvider	edit	summary
	JulianBrewer	Dr Julian O Brewer	07891 039042	9351579425	NQO80863802	2000-11-25	ОК	TestProvider	edit	summary

Digital phenotyping

BMC Medicine

RESEARCH ARTICLE

Open Access

(CrossMark

An external validation of models to predict the onset of chronic kidney disease using population-based electronic health records from Salford, UK

Paolo Fraccaro^{1,2,3}, Sabine van der Veer^{2,3}, Benjamin Brown^{1,2,3}, Mattia Prosperi^{2,3,4}, Donal O'Donoghue⁵, Gary S. Collins⁶, Iain Buchan^{1,2,3} and Niels Peek^{1,2,3*}

Abstract

Background: Chronic kidney disease (CKD) is a major and increasing constituent of disease burdens worldwide. Early identification of patients at increased risk of developing CKD can guide interventions to slow disease progression, initiate timely referral to appropriate kidney care services, and support targeting of care resources. Risk prediction models can extend laboratory-based CKD screening to earlier stages of disease; however, to date, only a few of them have been externally validated or directly compared outside development populations. Our objective was to validate published CKD prediction models applicable in primary care.

Methods: We synthesised two recent systematic reviews of CKD risk prediction models and externally validated selected models for a 5-year horizon of disease onset. We used linked, anonymised, structured (coded) primary and secondary care data from patients resident in Salford (population ~234 k), UK. All adult patients with at least one record in 2009 were followed-up until the end of 2014, death, or CKD onset (n = 178,399). CKD onset was defined as repeated impaired eGFR measures over a period of at least 3 months, or physician diagnosis of CKD Stage 3–5. For each model, we assessed discrimination, calibration, and decision curve analysis.

Results: Seven relevant CKD risk prediction models were identified. Five models also had an associated simplified scoring system. All models discriminated well between patients developing CKD or not, with c-statistics around 0.90. Most of the models were poorly calibrated to our population, substantially over-predicting risk. The two models that did not require recalibration were also the ones that had the best performance in the decision curve analysis.

Conclusions: Included CKD prediction models showed good discriminative ability but over-predicted the actual 5-year CKD risk in English primary care patients. QKidney, the only UK-developed model, outperformed the others. Clinical prediction models should be (re)calibrated for their intended uses.

Keywords: Chronic kidney disease, Clinical prediction models, eGFR, Decision support, Electronic health records, Model validation, Model calibration

Summary: The Wearable Clinic

- Growing number of people with long-term conditions, over-burdening the health service
- Ubiquity of information technology in daily life → create a virtual clinic that is "always with you"
- Workstreams
 - wearable sensing
 - dynamic risk prediction
 - adaptive care planning
 - support future real-world deployment
- Two clinical exemplars

Thank you

Niels Peek

MRC Health eResearch Centre The University of Manchester, UK

<u>M niels.peek@manchester.ac.uk</u>

🔰 @NielsPeek / #WearClin